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The concept of a surface e!ect ship (SES) is to lift the hull partly by the air cushion enclosed
within two side hulls, a bow skirt and a stern seal. Consequently, it results in lower draft,
resistance and motions than equivalent length catamarans in most sea states. In very low sea
states, however, there is a signi"cant design problem, which is high vertical accelerations,
referred to as the cobblestone e!ect. The oscillations are based on resonance phenomena and
are caused by the change of the cushion volume due to the incident waves. The resonance
oscillations have an important damping mechanism which is derived from the air leakage #ow
under the stern seal bag of a SES. Hence, the accurate prediction of the leakage #ow is required
for the estimation of the cobblestone e!ect. In order to solve the unsteady #ow "eld under the
stern seal bag, a viscous #ow code for numerically simulating two-dimensional incompressible
#ows has been developed. The governing equations to be solved are the time-dependent
Navier}Stokes equations, using the arti"cial compressibility approach. The spatial discretiz-
ation is based on a cell-centred "nite volume formulation. The inviscid #uxes are evaluated by
Roe's scheme with the third-order-accurate MUSCL approach. Time integration is conducted
by the second-order accurate backward Euler formula and the linear equation system is solved
by an approximate Newton relaxation scheme with the symmetric Gauss}Seidel iteration
approach. For the resulting time integration to be conservative on a moving grid system,
a geometric conservation law is introduced. A numerical procedure is presented and contribu-
tions of the viscous e!ects to the cobblestone e!ect problem are discussed.

( 2000 Academic Press
1. INTRODUCTION

A SURFACE EFFECT SHIP (SES) is an air-cushion-supported high-speed craft where the air-
cushion is enclosed with two side hulls, a bow skirt and a stern seal. Due to the support
system, one obtains lower draft, resistance and motions than equivalent length catamarans
in most sea states. In very low sea-states, however, resonant heave and pitch motions
induced by the compressibility of air in the pressurized cushion may produce high vertical
accelerations which are referred to as the cobblestone e!ect. The oscillations are caused by
the change of the cushion volume due to the incident waves. The two lowest cushion
resonance frequencies for a 30}35 m long SES are approximately 2 and 5}6 Hz, whose
pressure variations in the cushion are uniform and the "rst spatial resonance of a standing
wave, respectively.
889}9746/00/101053#17 $35.00/0 ( 2000 Academic Press
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Ulstein (1995) investigated the nonlinear e!ects of the bag on the cobblestone e!ect
problem by conducting time-domain simulations coupled with bag motion, cushion
pressure and SES motions in the vertical plane. He found that the #exible stern bag reduces
the frequency of the "rst spatial pressure resonance of the air-cushion from 6 to 5 Hz for
a 30}35 m long SES, relative to the air-cushion supported with a rigid stern seal. Conse-
quently, prediction of the unsteady pressure distribution on the bag, which is required for
the calculation of the bag deformation, is very important in the estimation of the vertical
oscillations. Since, however, he assumed that the #ow around the bag is inviscid, boundary
layers developed over the bag were neglected and the separation point on the bag had to be
chosen.

In the present work, the unsteady pressure distribution on the rigid stern seal bag is
numerically simulated with consideration of viscous e!ects. A viscous #ow code for
a moving grid system has been developed to obtain the solution of the time-dependent
Navier}Stokes equations with the arti"cial compressibility approach. Results are compared
with data obtained by Ulstein's method, and the contributions of the viscous e!ects to the
cobblestone e!ect are discussed.

2. FORMULATION

2.1. LONGITUDINAL MOTION EQUATIONS FOR SES

A Cartesian coordinate system, whose origin is at the centre of gravity of the SES, is moving
with the forward speed ; as de"ned in Figure 1. The equations of coupled heave g
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pitch g
5

motions can be written as
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where M and I
5

are the mass and moment of inertia of the SES and ¹ is time; Ah, Bh, Ch are
the hydrodynamic derivatives of the two side hulls and Fh are linear hydrodynamic
Figure 1. Global coordinate system and cushion model.
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excitation forces on the side hulls, which are computed on the basis of the strip theory, as
shown by Ulstein (1995).

Fa are nonlinear aerodynamic forces on the SES, de"ned as
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where B
C

is the breadth of the cushion. PK
C

and PK
B

are small perturbations of the cushion
pressure and the pressure acting on the bag due to the leakage #ow, respectively. The
methods to predict these aerodynamic forces are described in Sections 2.2 and 2.3.

In the present scheme, the fourth-order accurate Runge}Kutta method with Gill con-
stants is used as the time integration.

2.2. AIR-FLOW IN A CUSHION

2.2.1. Governing equation

In order to obtain the aerodynamic forces due to the cushion pressure in equations (3) and
(4), the #ow in the cushion is solved with use of a time-dependent compressible potential
solver. The cushion pressure is assumed to be constant in the lateral and vertical directions.
Thus, the linearized one-dimensional governing equation for the air-cushion velocity
potential U is given by
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where c is a sound speed and LU/LZ is given.
The Cushion pressure P

C
and air density o

C
are decomposed as follows:
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In equation (6), the su$x 0 and K refer to the equilibrium value and perturbation, respective-
ly. Here PK

C
is written as
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2.2.2. Discretization

A "nite-volume approach with a cell-centred layout is adopted for spatial discretization.
The velocity potential U

i
is placed at the centre of each grid cell. The second derivative with

respect to X is evaluated with the second-order accurate central di!erencing scheme. The
discretized governing equation is expressed as
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where U
i
is the average of U over Z and H

C
is the cushion height.

The time integration scheme used is also the fourth-order accurate Runge}Kutta method
with Gill constants, the same for the SES motion equations.
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2.2.3. Boundary conditions

With consideration of the fan e!ect, the vertical velocity at the rigid part of the wet
deck(top) is de"ned as
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where (LQ
i
/LP)

0
is a two-dimensional cushion fan slope at the equilibrium state and X

f
, A

f
are X coordinates of fan and fan area, respectively. The volume #ux of air into the cushion
through the fan, Q

i
, is decomposed as
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The vertical velocity at the free surface (bottom) is given by
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where N
w

is the number of regular wave components used. The incident wave amplitude
f
a

is computed from a modi"ed Pierson}Moskowitz wave spectrum; k, u
e

and e are the
wave number, wave encounter frequency and random-phase angle, respectively.

At both bow and stern ends, the longitudinal velocities are expressed as
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where the volume #ux of air leakage, Q
o
, is

Q
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L
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In the equation above, <
A

is the leakage velocity, k is the jet contraction coe$cient and
H

L
is the leakage height. <

A
can be computed from the steady Bernoulli's equation for the

incompressible #ow, since the leakage velocity is smaller than the sound speed, and the
length of the seal is much shorter than that of a standing pressure wave in the cushion, so
that
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Here (P
C
)
%/$

and P
a
are the cushion pressure at bow or stern end and atmospheric pressure,

respectively. Equation (14) is derived under the assumption that the #ow shifts to a jet #ow
at the lowest point of the bag.

2.3. AIR-FLOW UNDER A STERN SEAL BAG

In order to obtain the aerodynamic forces due to the pressure acting on the bag in equations
(3) and (4), the pressure distribution on the bag is required. However, predicting the pressure
distribution is very di$cult, since the leakage #ow phenomena around the lowest point of
the bag are very complicated. Upstream of the lowest point, the characteristics of the #ow
are almost the same as those of nozzle #ow. When the air passes under the lowest point, the
state of the #ow changes to di!user #ow. Thus, the #ow becomes unstable and the air soon



Figure 2. Flow around a stern seal bag.
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separates. After the separation, the #ow shifts to jet #ow. This is considered to characterize
the #ow phenomena. In the present work, a two-dimensional time-dependent incompres-
sible Navier}Stokes solver is adopted for the investigation of the #ow around the bag.
Details are described in Section 3.

For comparison, with the steady Bernoulli and continuity equations, the pressure
distribution on the bag is computed as follows:
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where H(X) is the ground height as de"ned in Figure 2.

3. NAVIER}STOKES SOLVER

3.1. GOVERNING EQUATIONS

The governing equations are the arti"cial compressibility form of the two-dimensional
time-dependent Navier}Stokes equations in conservative form. They can be given as
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where x and y are the Cartesian coordinates. The dependent variables q, the inviscid #uxes
e, f and the viscous #uxes e

v
, f

v
are written as

q"C
p

u

vD , [e, f ]"C
bu bv

u(u!u
g
)#p u(v!v

g
)

v(u!u
g
) v(v!v

g
)#pD ,

(17)

[e
v
, f

v
]"!A

1

Re
#l

tB C
0 0

2u
x

u
y
#v

x
u
y
#v

x
2v

y
D .

In equation (17), u, v and u
g
, v

g
are the Cartesian components of #uid and grid velocities,

respectively. p is the pressure and b is a positive constant of arti"cial compressibility. All the
variables are made dimensionless using the atmospheric air density o

a
, the equilibrium
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leakage velocity <
A0

, and the bag length ¸
B
. Re is the Reynolds number de"ned as <

A0
¸
B
/l,

where l is the kinematic viscosity; l
t

is the nondimensional kinematic eddy viscosity
determined from a turbulence model.

3.2. SPATIAL DISCRETIZATION

A cell-centred "nite-volume method is used for spatial discretization. The dependent
variables q and the kinematic eddy viscosity l

t
are placed at the centre of each grid cell and

the grid cell is treated as a control volume. The integration of #ux is conducted using the
Gauss integral theorem. Thus, the governing equations discretized in space are derived as
follows:
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In these equations, indices i and j are the cell numbering in curvilinear coordinates m and g,
respectively, and $1

2
in the subscripts and overscripts correspond to the cell faces. < is

a volume of the cell, and S
x
,S

y
are the area vector components of the cell boundaries.

The inviscid #ux E is expressed as
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where ; and ;
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are the #uid and grid contravariant velocity components in curvilinear
coordinate direction m, respectively,
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The treatment of the grid velocity is described in Section 3.4.
The inviscid #uxes are discretized by the #ux di!erence split scheme of Roe (1986). In the

scheme, the numerical inviscid #ux EM
i`1@2

is given by
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where qL
i`1@2

and qR
i`1@2

are the dependent variables extrapolated on the left and right sides
of a cell face, respectively. E(qL) and E(qR) are evaluated from equation (20) with qL or qR and
the area vectors. The Roe matrix A is the Jacobian of the inviscid #ux E expressed as
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In equation (23) the dependent variables at the cell face q
i`1@2

are evaluated by Roe's
averaging, namely the simple average of the right- and the left-side values. The eigenvalues
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of the matrix A are ;,;#c
ac
,;!c
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where c
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is the pseudo-speed of sound given by
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With introduction of the right-eigenvector R, the matrix DAD is expressed as
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where DKD is
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To attain third-order accuracy, the interface variables qL and qR are extrapolated by the
MUSCL approach of Anderson et al. (1986) as
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The above expression corresponds to the third-order accurate upwind-biased scheme
with /"1 and t"1

3
. When /"0 one obtains the "rst-order accurate upwind scheme. The

numerical inviscid #ux FM is evaluated in a similar manner.
Viscous #uxes are discretized by the second-order central di!erencing scheme based on

the Gauss integral theorem.

3.3. TIME INTEGRATION

The second-order accurate backward Euler formula is used for the time integration. To
simplify the description of the process, consider the one-dimensional case of equation (18)
which can be written as
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where the numerical #ux EO is expressed as the sum of the numerical inviscid #ux EM and the
viscous #ux e

v
. Equation (28) is solved by an approximate Newton relaxation method of

Whit"eld & Taylor (1991) as
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In these equations, m denotes the iteration index, and N@(q) is the Jacobian of the numerical
#ux vector with the "rst-order accurate upwind di!erencing. The resulting formulation of
equation (29) is
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where
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. (32)

In equation (31), I
a
is the 3]3 identity matrix except the "rst diagonal element which is zero

in order to satisfy the incompressible continuity equation. Equation (31) is solved with the
initial value of qn`1,1"qn at each time step, and the generated sequence qn`1,m`1 converges
to qn`1, hence equation (28) is satis"ed.

At each step of the Newton iteration, a large sparse linear system of equations has to be
solved. In the present work, a symmetric Gauss}Seidel (sGS) relaxation approach is
adopted.

3.4. GEOMETRICAL CONSERVATION LAW

For the resulting time integration to be conservative on a moving grid system, we must
consider conservation of volume, which means that equation (18) should be satis"ed on
a moving grid in a uniform #ow. When the grid moves and deforms in a uniform #ow, the
#uxes corresponding to a non-moving grid cancel out and then equation (18) becomes
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2Dt
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where <
g
is the grid velocity component in curvilinear coordinate direction g.

Next, the change of the volume is expressed as the sum of contributions from the
movement of the each cell surfaces D<m, D<g as illustrated in Figure 3,

<n`1"<n#[D<m n`1]i`1@2
i~1@2

#[D<g n]j`1@2
j~1@2

. (34)
Figure 3. Geometrical conservation law (GCL).



COMPUTATION OF COBBLESTONE EFFECT 1061
Then, equation (33) can be written as
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The equations above are called the integral form of the &&geometric conservation law''
(GCL) by Thomas & Lombard (1978), since they deal with geometric properties and have
the same general form as the integral statement of mass conservation. The grid velocities
;

g
and <

g
in equation (20) are evaluated from equations (35) and (36).

3.5. TURBULENCE MODEL

The closure of the system of equations is achieved by introducing an algebraic two-layer
turbulence model proposed by Baldwin & Lomax (1978). The kinematic eddy viscosity is
given by
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are the normal distance to the wall and the y coordinate where (l
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In the inner region, (l
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is given by the Prantl}Van Driest formulation as
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where DuD is the vorticity magnitude and
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y` is the distance to the wall in wall units.
In the outer region, the following expression is used:
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minimum velocity magnitudes in the pro"le. F
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The model constants appearing in the foregoing relations are as follows:

A`"26, C
cp
"1)6, C

,-%"
"0)3, C

wk
"1)0,

i"0)41, K"0)0168.

The value of C
wk

is modi"ed from the original value (0)25) as suggested by Renze et al.
(1992).

3.6. BOUNDARY CONDITIONS AND COMPUTATIONAL GRID

At the in#ow boundary, the velocity is speci"ed as

u
*/&-08

"

<
A
H

L
<
A0

H
C

, v
*/&-08

"0, (44)

and the zero-extrapolation scheme is used for the pressure. At the out#ow boundary,
zero-extrapolation for the velocities and p"0 are given. At the bottom boundary and on
the wet-deck, the free slip condition with consideration of the movement of the free-surface
due to the incident waves or the motion of the SES, is imposed. On the bag surface, a solid
condition with grid velocities due to the SES motion is adopted. At the outer boundary, all
dependent variables are extrapolated by the zero-extrapolation scheme.

Figures 4 and 5 illustrate the computational grid around a bag at a gap height of 30 mm.
The air #ows from the right side in these "gures. The computational grid is body "tted
to facilitate the implementation of boundary conditions. The mesh contains 89 planes
Figure 5. Enlarged view of initial computational grid.

Figure 4. Initial computational grid at H
L
"30 mm.
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streamwise and 49 vertically. The minimum spacings are 0)005 (17 mm) and 2)1]10~6

(0)007 mm) in the streamwise and the vertical directions. The grid points are clustered near
the bag and the free-surface.

The solution domain extends two bag lengths upstream from the leading edge of the bag
and an equal distance downstream from the trailing edge of the bag.

4. RESULTS AND DISCUSSION

4.1. COMPUTATIONAL CONDITIONS

Table 1 lists the principal particulars of a 30 m long class SES and data used in the present
numerical simulation. Almost 80% of the weight is supported with the pressurized air-
cushion and the leakage height at the stern, H

L
, is only 30 mm.

The incident wave elevation is implied by equation (11). A head sea condition is
considered and the peak period ¹

p
is set to 1)8 s. Consequently, the peak encounter period

¹
e
becomes 0)2 s, which corresponds to the "rst spatial resonance frequency of the cushion.

The signi"cant wave height is just 10 mm, since the present method does not allow the bag
of the SES to touch the free-surface.

The equation system of SES motions and cushion pressure is solved with a coupling of
the leakage #ow solver for the four cases summarized in Table 2. In Case 1, leakage velocity
TABLE 2

Computed conditions

Leakage velocity Pressure on the bag

Case 1 <
A
"<

A0
P
B
"P

C
Case 2 Equation (14) P

B
"P

C
Case 3 Equation (14) Equation (15)
Case 4 Equation (14) N}S equations

TABLE 1

Principal particulars of the SES

Weight (M) 140 000 kg
Moment of inertia (I

5
) 6 860 000 kg m2

Cushion length (¸
C
) 28 m

Cushion height (H
C
) 1)368 m

Cushion beam (B
C
) 8 m

Mean side-hull beam (b) 1)5 m
Mean side-hull sectional area coef.(s) 0)5
Mean cushion pressure (P

C0
) 5000Pa

Mean fan #ow rate (Q
i0
) 2)8 m2/s

Cushion fan slope (LQ/LP) !0)00104 m2s/kg
X coordinate of fans (X

f
) 12 m

Height of bag (H
B
) 1)338 m

Length of bag (¸
B
) 3)489 m

Radius of curvature (R
1
) 4.260 m

Radius of curvature (R
2
) 0)387 m

Jet contraction at bow (k
FE

) 0)611
Jet contraction at stern (k

AE
) 0)963

Forward speed (;) 23)15 m/s
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and height are constant. Case 2 involves a variable leakage velocity and height e!ect,
however the pressure distribution on the bag is not taken into account. Both Cases 3 and
4 consider the leakage e!ect and varying pressure distribution on the bag. The di!erence
between them is whether viscous e!ects are involved or not. In the viscous numerical
simulation (Case 4), the Reynolds number is set to 2)2]107.

4.2. EQUILIBRIUM FLOW UNDER A BAG

As described in Section 2, the equations of motion are calculated from the equilibrium
condition. Hence, all cases require information on the equilibrium #ow around the bag as
an initial condition.

Figure 6 shows the computed velocity vectors for Case 4. The leakage #ow comes from
the right-hand side in the "gure. At the lowest point of the bag, the velocity becomes
Figure 7. Contour maps of initial pressure distribution. Contour interval is 100 Pa. Dotted lines show negative
values.

Figure 6. Initial velocity vector maps.



Figure 8. (a) Bag con"guration (Z versus X) (b) Pressure distribution on a bag: **, NS computation; ....,
equation (15).
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a maximum, approximately 93 m/s. After the air #ows under the lowest point, the #ow
spreads, although a large separation occurs over the bag.

Figure 7 depicts the computed pressure distribution for Case 4. In order to set the
computational pressure to the cushion pressure at the leading edge of the bag, a constant
value is added to the computed one. In the region where the ground height is very small, the
#ow is almost a one-dimensional #ow similar to the #ow in the ground-e!ect mode. Behind
the lowest point of the bag, the pressure recovers signi"cantly.

Figure 8 shows the comparison of the viscous and inviscid pressure distributions on the
bag. The lowest point of the bag is located at X"!14 m and the leading edge of the bag is
at X"!10)83 m. Around the lowest point, the present method provides a smaller pressure
than that from the inviscid solution, because of the displacement e!ect due to the boundary
layers developed over the bag. Behind the lowest point, the pressure from the inviscid
solution is almost zero since the #ow is assumed to shift to a jet at the lowest point. In
contrast, the viscous #ow solver simulates the pressure recovery due to the di!user #ow,
approximately 1300 Pa, before the separation at X"!14)09 m. Behind the separation,
the #ow is considered to change to jet #ow, although the computed results cannot simulate
the behaviour of the jet, owing to the lack of a turbulence model for the jet #ow. The
pressure recovery before the separation is expected to contribute to more realistic
simulations of the bag deformation problem. However, detailed description of the #ow
requires a turbulence model tuned with use of measured data.



Figure 9. Spectra for cushion pressure: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4. **, at forward
perpendicular (FP); ...., at centre of gravity (CG); - - - , at aft perpendicular (AP).

Figure 10. Spectra for vertical acceleration (a)}(d) as in Figure 9.
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4.3. EFFECTS ON CUSHION PRESSURE

Figures 9 and 10 show the unsteady cushion pressure and the vertical acceleration spectra
at FP, CG and AP for all cases. In the pressure spectra for Case 1, two peaks can be
observed around approximately 6 and 12 Hz which correspond to the "rst and second
spatial resonances of a rectangular box with the cushion length of 28 m. The pressure at CG
does not have the peak around 6 Hz because the frequency is a pitch motion mode. Spectra
of the vertical acceleration have similar trends to that of the pressure.

First, we compare Cases 1 and 2. The cushion supported with the leakage e!ect leads to
the large oscillations, relative to the cushion supported without this e!ect. This may be
explained by the interaction between cushion pressure and varying pressure due to the
leakage e!ect.

Next, three cases (Cases 2, 3 and 4) are compared. The di!erence between their conditions
is the treatment of the bag forces. The bag forces do not a!ect the vertical motion itself
directly, since the length of the bag is very small compared with that of the cushion.
Figure 11. Time histories of (a) vertical force on the SES, Fa
3
and (b) pitching moment on the SES, Fa

5
:**, Case

2; . . . . , Case 3; - - - -, Case 4.



Figure 12. Time histories of vertical force on the bag, Fa~"!'
3

:**, Case 3; - - - -, Case 4.
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Figure 11 depicts the comparison of the time histories of the aerodynamic forces acting
on the SES. Although Case 2 di!ers slightly from the others, Cases 3 and 4 are almost the
same in relation to the total aerodynamic forces.

Figure 12 shows the comparison of the time histories of the bag force. Some discrepancies
can be seen between Case 3 and 4 due to the pressure recovery.

5. CONCLUSION

In order to obtain the pressure distribution on a stern seal bag of an SES with consideration
of viscous e!ects, a two-dimensional time-dependent incompressible Navier}Stokes solver
was developed using the "nite-volume method on a moving grid system. The method was
applied to the cobblestone e!ect problem for a 30 m long class SES with rigid stern seal bag.
Results were compared with the data using the inviscid method by Ulstein, and the pressure
recovery from the lowest point of the bag to the separation point could be seen in the
viscous #ow investigation. For the cushion supported with a rigid stern seal, the viscous
e!ect was not so signi"cant. However, for the cushion supported with a #exible stern seal,
the recovery due to the viscous e!ect is expected to contribute to more realistic estimation
of both the bag deformation and the global motion.

Future plans include the introduction of jet phenomena and consideration of the #exible
bag motion.
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